AC OPF in Radial Distribution Networks - Part I: On the Limits of the Branch Flow Convexification and the Alternating Direction Method of Multipliers
نویسندگان
چکیده
The optimal power-flow problem (OPF) has always played a key role in the planning and operation of power systems. Due to the non-linear nature of the AC power-flow equations, the OPF problem is known to be non-convex, therefore hard to solve. Most proposed methods for solving the OPF rely on approximations (e.g., of the network model) that render the problem convex, but that consequently yield inexact solutions. Recently, Farivar and Low proposed in [1,2] a method that is claimed to be exact for the case of radial distribution systems under specific assumptions, despite no apparent approximations. In our work, we show that it is, in fact, not exact. On one hand, there is a misinterpretation of the physical network model related to the ampacity constraint of the lines’ current flows and, on the other hand, the proof of the exactness of the proposed relaxation requires unrealistic assumptions related to the unboundedness of specific control variables. Therefore, there is a need to develop algorithms for the solution of the non-appproximated OPF problem that remains inherently nonconvex. Recently, several contributions have proposed OPF algorithms that rely on the use of the alternating-direction method of multipliers (ADMM). However, as we show in this work, there are cases for which the ADMM-based solution of the non-relaxed OPF problem fails to converge. To overcome the aforementioned limitations, we propose a specific algorithm for the solution of a non-approximated, non-convex OPF problem in radial distribution systems. In view of the complexity of the contribution, this work is divided in two parts. In this first part, we specifically discuss the limitations of both BFM and ADMM to solve the OPF problem.
منابع مشابه
AC OPF in Radial Distribution Networks - Parts I, II
The optimal power-flow problem (OPF) has always played a key role in the planning and operation of power systems. Due to the non-linear nature of the AC power-flow equations, the OPF problem is known to be non-convex, therefore hard to solve. Most proposed methods for solving the OPF rely on approximations (e.g., of the network model) that render the problem convex, but that consequently yield ...
متن کاملBranch Flow Model: Relaxations and Convexification—Part I
Abstract—We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial netw...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملBranch Flow Model : Relaxations and Convexification ( Part I ) Masoud
We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we ...
متن کاملBranch Flow Model : Relaxations and Convexification ( Part I ) Masoud Farivar
Abstract—We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial netw...
متن کامل